Mathematical Analysis I A

Objectives

Available soon

General characterization

Code

10969

Credits

9.0

Responsible teacher

Oleksiy Karlovych

Hours

Weekly - 6

Total - Available soon

Teaching language

Português

Prerequisites

Available soon

Bibliography

Campos Ferreira, J. - Introdução à Análise Matemática, Fundação Calouste Gulbenkian, 1982.

Demidovitch, B. - Problemas e exercícios de análise matemática, Mir, Moscovo, 1987 (ou qualquer outra edição).

Elon Lages Lima - Curso de Análise - Projeto Euclides, Rio de Janeiro, 1989.

Figueira, M. - Fundamentos de Análise Infinitesimal, Textos de Matemática, vol. 5, Departamento de Matemática, Faculdade de Ciências da Universidade de Lisboa, 1996.

Santos, J.P. - Cálculo numa variável real, IST Press, 2012.

Sarrico, C. - Análise Matemática, Leitura e Exercícios, Gradiva, 1997.

Teaching method

Available soon

Evaluation method

Available soon

Subject matter

1. Real numbers. Topological notions in IR. Mathematical induction.

2. Sequences of real numbers: Limits. Infinite limits. Limits at infinity. Monotone sequences. Convergent sequences. Subsequences. Upper limit and lower limit. Cauchy sequence. Completeness of IR.

3. Single real variable functions: limits and continuity. Properties of continuous functions; Bolzano’s theorem. Weierstrass theorem. Uniform continuity. Lispschitz continuous functions. Cantor’s theorem.

4. Differential calculus: Derivatives, physical and geometric interpretations and properties. Fundamental theorems: Rolle, Darboux, Lagrange and Cauchy. Cauchy rule. Taylor’s formula and applications. Extrema, concavity and inflection points.

Programs

Programs where the course is taught: