Atomic and Molecular Physics

Objectives

The aim of the course is to provide students with a solid background in Atomic and Molecular Physics. After approval in this course, the students will be able to understand the technology which is the backbone of the instrumentation used currently in several fields of Physics, Chemistry, Biology and Medecine, which involve the interaction of particles/radiation with matter.

 

 

General characterization

Code

10527

Credits

6.0

Responsible teacher

José Paulo Moreira dos Santos, Paulo Manuel Assis Loureiro Limão Vieira

Hours

Weekly - 5

Total - 72

Teaching language

Português

Prerequisites

Available soon

Bibliography

- Física Atómica - J. P. Santos, 2019

- Physics of Atoms and Molecules – B. H. Bransden and C. J. Joachain, 2nd Ed., Prentice Hall, 2003

- Introduction to the Structure of Matter – J. J. Brehm and W. J. Mullin, Wiley, 1989

- Física Quântica – Eisberg e Resnick, Elsevier, 1979

- Atomic and Molecular Collisions – H. Massey, Taylor & Francis, 1979

- Molecular Quantum Mechanics – P. W. Atkins and R. S. Friedman, 3rd Ed., Oxford, 1997

- Modern Atomic Physics – B. Cagnac, J. C. Pebay-Peyroula, The Macillan Press, 1975

- Perspectives of Modern Physics – A. Beiser, McGraw-Hill Int. Ed., 1988

- Quantum States of Atoms. Molecules, and Solids – M. A. Morrison, T. L. Estle, N. F. Lane, Prentice Hall, 1976

- Physical Chemistry – P. W. Atkins, Oxford, 1990

Teaching method

The material will be presented in lectures, followed by discussion of applied problems. The students will have also laboratory work and problems solving.

Evaluation method

Available soon

Subject matter

- Interactions – classical and quantum interpretation

Particles and radiation interactions with atoms and molecules; scattering by a central potential; elestic, inelastic and reactive cross sections; reaction velocity; Coulomb scattering and atomic structure.

- Hydrogen-like atoms

Review on the atomic model and the Schrödinger equation solution for the hydrogen; angular momentum; atoms in fields; radiative transitions; selection rules; Zeeman effect; spin.

- Many electrons atoms

Simetria e princípio de exclusão de Pauli; átomo de hélio; modelo do átomo em camadas; campo central e potencial resultante; acoplamentos L, S e j, j; raios-X e electrões de Auger; coeficientes de Einstein; introdução ao laser de He-Ne.

- Molecular structure

Molecules; different sets of bonding; Schrödinger equation for molecular systems; Born-Oppenheimer and adiabatic approximations; molecular states: vibrational, rotational and electronic; radiative and non-radiative transitions; molecular clusters; polyatomic molecules.


Laboratory

  1. Photoelectric Emission
  2. Electron Beam Diffraction
  3. Gas discharges
  4. Franck-Hertz experiment
  5.  X-ray
  6. Mass spectrometry
  7. Electron Spin Resonance


Programs

Programs where the course is taught: