Organic Chemistry and Biochemistry
Objectives
It is intended that students acquire the ability to understand the behavior of a set of natural and synthetic organic compounds used over the years in producing different objects and works of art. To this effect they must first understand the structure, properties and reactivity of the functional groups involved in the structures of the compounds in question - carbohydrates and polysaccharides, amino acids and proteins, triglycerides, fatty acids, oils and waxes, color compounds of natural or synthetic origin.
Students are prepared to perform qualitative tests that are used in the laboratory to identify the presence, to separate, and to understand the behavior of monomeric and polymeric molecules described in the course syllabus.
General characterization
Code
12031
Credits
6.0
Responsible teacher
Ana Maria Ferreira da Costa Lourenço
Hours
Weekly - 5
Total - 72
Teaching language
Português
Prerequisites
Available soon
Bibliography
- P. Mata, "Notas de Apoio às Aulas Teóricas de Química Orgânica", 2004.
- J. S. Mills, R. White, “The Organic Chemistry of Museum Objects”, Butterworth-Heineman, 1994.
- Pedro Paulo Santos, "Química Orgânica", Vol 1, Coleção Ensino da Ciência e da Tecnologia, IST Press, 2011.
- Pedro Paulo Santos, "Química Orgânica", Vol 2, Coleção Ensino da Ciência e da Tecnologia, IST Press, 2012.
Teaching method
Available soon
Evaluation method
Available soon
Subject matter
1. Carbon compounds: Bonding and structure
Chemical bonding - the atom and its structure; the chemical bond; electronegativity; carbon covalent bonding. Organic compounds – formulas in organic compounds; classification of organic compounds. Reactions – acids and bases; electrophiles and nucleophiles; introduction to reaction mechanisms.
2. Organic compounds
Hydrocarbons - structure and properties; isomerism – constitutional, cis-trans isomerism and conformational isomerism, introduction to optical isomerism. Other functional groups – structure and properties. Determination of structure – brief reference to separation methods and spectroscopic methods.
3. Oils and fats
Structure and properties. Degree of unsaturation and physical state; iodine number. Reactions of hydrogenation, saponification and oxidation. Drying oils, the drying process and factors affecting it. Yellowing of oil films. Uses in conservation and restoration.
4. Natural waxes
Structure and properties.
5. Natural, semi-synthetic and synthetic polymers
Types of polymers. Brief history of the development of synthetic polymers. Chemical bonds - polyolefins, polyesters and polyamides. Peptides and proteins - occurrence, examples, functions and properties. Amino-acids – structure and properties; chirality. Peptides and proteins – characteristics, structure and properties. Mechanisms of protein degradation - hydrolisis, photodegradation and biodegradation Amino acid dating of proteinaceous materials. Analysis of proteins – brief reference. Polymer uses in art, conservation and restoration.
6. Carbohydrate
Occurrence and functions. Structure and properties. Terminology and classification.Glycosidic bond - characteristics, formation and hydrolysis formation. Structures and properties of monosaccharides, disaccharides and polysaccharides. Particular reference to cellulose and its derivatives (cellulose nitrate and acetate), chitin, starch and glycogen. problems associated aith conservation and restauration of paper.
7. Dyestuffs and other coloured materials. Structural characteristics and examples.