Nanocircuits and Analog Systems

Objectives

Provide the student the ability to use analytical techniques in the design techniques of integrated circuits, including classical topologies and advanced amplifiers and analysis of transfer functions of circuits realized using switched-capacitor (SC) techniques.

Understanding CMOS technology, its potential and limitations. Learning the equations governing the MOS devices in its various operating regions, the optimal polarization schemes, as well as their small signals models at low and mid/high frequencies. Understanding body-effects, channel-modulation effects channel and short channel effects in MOS devices. Acquire the basics of noise in electrical circuits.

Learn how to analyze SC circuits in the discrete time domain and know how to analyze and design 1st order filters employing SC techniques. Understand the adverse effects associated with signal dependent charge-injection and clock-feed-through, as well as the techniques used to minimize them.

General characterization

Code

10501

Credits

6.0

Responsible teacher

João Carlos Palma Goes

Hours

Weekly - 4

Total - Available soon

Teaching language

Português

Prerequisites

Available soon

Bibliography

- [recomendado / recommended] David Johns, Ken Martin, Analog Integrated Circuit Design, 1997/2011, John Wiley & Sons.
- [opção 1 / option 1] Behzad Razavi, Design of Analog CMOS Integrated Circuits, 2001, McGraw-Hill.
- [opção 2 / option 2] Willy Sansen, Analog Design Essentials, 2006, Springer.
- Diapositivos /slides disponíveis / available no / in Moodle.

Teaching method

Available soon

Evaluation method

Available soon

Subject matter

The course is divided into 5 macro modules:
- CMOS Technology;
- Design of CMOS Amplifiers;
- Types of noise, sampled-noise (kT/C) and calculus of the excess noise factor of a CMOS amplifier;
- Analysis and design of switched-capacitor circuits in the discrete time-domain;
- Analysis and design of switched-capacitor filters.