Algebra II

Objectives

Theory of factorization in rings, rings of polynomials and field extensions.

General characterization

Code

10981

Credits

6.0

Responsible teacher

Gonçalo Jorge Trigo Neri Tabuada

Hours

Weekly - 5

Total - Available soon

Teaching language

Português

Prerequisites

None.

Bibliography

1. J. Durbin, Modern Algebra, John Wiley & Sons, Inc.

2. N. Jacobson, Basic Algebra I, W. H. Freeman and Company.

3. S. Lang, Algebra, Addison-Wesley Publishing Company, Inc.

4. A. J. Monteiro e I. T. Matos,  Álgebra, um primeiro curso, Escolar Editora.

5. M. Sobral,  Álgebra, Universidade Aberta.

6. G.M.S. Gomes, Anéis e Corpos, uma introdução, DM-FCUL, 2011.

Teaching method

Lectures + problem-solving sessions (5h00). 

Evaluation method

Available soon

Subject matter

I. Theory of Factorization

1. Divisors.
2. Prime and coprime elements.
3. Gauss semigroups.
4. Gauss rings.
5. Principal ideal rings.
6. Euclidean domains.

II. Rings of Polynomials

1. Rings of polynomials.
2. Division algorithm.
3. Polynomial functions.
4. Theory of factorization in rings of polynomials.
5. Irreducibility.

III. Field extensions

1. Prime fields. 
2. Extensions. Simple extensions.  Algebraic extensions.
5. Algebraically algebraic closed fields and algebraic closure of a field.
6. Rupture and splitting fields.
7. Finite fields.

Programs

Programs where the course is taught: