Enzymology
Objectives
After completing this course the students should have general knowledge on the molecular nature and function of enzymes. The students should understand the role of enzymes in the cell and be able to describe the different mechanisms involved in the regulation of their activity.
The students should be able to construct mathematical models to describe the kinetic behavior of enzymes under different situations. The models might include the presence of inhibitors, one or two substrates, pH dependence, and cooperativity. The students should know how to use the models to analyze experimental data and determine the kinetic parameters that are relevant in each case, understanding their physical significance. Also, they should be aware of the assumptions used in the derivation of the models and the experimental conditions that guarantee their validity.
General characterization
Code
10714
Credits
6.0
Responsible teacher
Maria Teresa Nunes Mangas Catarino, Sofia Rocha Pauleta
Hours
Weekly - 4
Total - 56
Teaching language
Português
Prerequisites
There are no requirements, but this curricular unit relies on previous knowledge of general concepts of Biochemistry.
Bibliography
-
- Fundamentals of Enzymology. 1999 (3rd Edition) Nicholas C. Price and Lewis Stevens,OxfordUniversity Press
- Cinética Enzimática. 2006. Teresa Moura e Francisco Pinto (Edição do Departamento de Química da FCT/UNL)
- Biochemistry. 2019 (9th Edition) Jeremy M. Berg, John L. Tymoczko, Gregory Gatto and Lubert Stryer, Ed. W.H. Freeman
- Fundamentals of Enzyme Kinetics. 2012 (4th Edition) Athel Cornish-Bowden, Wiley-Blackwell
- Practical Enzymology. 2011 (2nd Edition) Hans Bisswanger, Wiley-Blackwell
Teaching method
The teaching is organized in lectures, problem solving workshops and analysis of experimental results. The contents of the course will be presented to the students during the lectures. The application of the concepts and mathematical models will be made in the workshops where the students will work in small groups.
Evaluation method
Final Grade = 75% (2 written examination papers) + 10% written work on Enzyme applications + 15% Quizzes
The student has to get a final grade of at least 9.5/20 to pass the course. The average grade of the written papers cannot be lower than 9.5/20.
To be evaluated the student has to be present in 2/3 of the classes, deliver the written assay and be present in the poster presentation and discussion.
Subject matter
1. General concepts: properties of enzymes and their role in the cell. Cofactors and coenzymes.
2. The active site. Transition state theory. Effect of temperature and pH.
3. Molecular mechanisms of enzyme action.
4. Regulation of enzymatic activity.
5. Application of enzymes in industry and health
6. Enzyme kinetics.
6.1. Derivation of the Michaelis-Menten equation and its assumptions. Determination of the kinetic parameters of the enzyme: Vmax and KM.
6.2. Enzyme kinetics in the presence of a reversible inhibitor: model of Webb.
6.3. Enzyme kinetics for reactions involving two substrates.
6.4. pH dependence of enzymatic activity. Kinetic models with one or more acid/base centres. Determination of pKa values.
6.5. Oligomeric enzymes with and without cooperativity. Monot Wyman and Changeux (MWC) kinetic model for cooperativity. Measurement of cooperativity.