Malaria
Objectives
After this unit, students should be able to: 1. Come in contact with and perform some essential techniques for the study of malaria in the laboratory (in particular the use of animal models and in vitro cultures). 2. To deepen the knowledge on the biology of the parasite's life cycle and parasite’s the relationship with the host vertebrate and mosquito vector. 3. Understand, analyse and evaluate the applicability of some methodologies for the study and control of malaria. 4. Recognize the different areas of interest in the study of malaria and its relevance through the interaction with IHMT researchers and external guests.
General characterization
Code
9512012
Credits
2
Responsible teacher
Fátima Nogueira
Hours
Weekly - 9
Total - 24
Teaching language
Portuguese
Prerequisites
Attendance of 2/3 of classes is mandatory
Bibliography
• Das D, Dahal P, Dhorda M, Citarella BW, Kennon K, Stepniewska K, Felger I, Chappuis F, Guerin PJ. A Systematic Literature Review of Microscopy Methods Reported in Malaria Clinical Trials. Am J Trop Med Hyg. 2020 Dec 21;104(3):83641. doi: 10.4269/ajtmh.20-1219. Epub ahead of print. PMID: 33350371; PMCID: PMC7941839. • Dhorda, M., Ba, E., Kevin Baird, J. et al. Towards harmonization of microscopy methods for malaria clinical research studies. Malar J 19, 324 (2020). https://doi.org/10.1186/s12936-020-03352-z • Global Malaria Programme. https://www.who.int/teams/global-malaria-programme/case-management/diagnosis/microscopy • Machado et al, (2016) Whole-Cell SYBR Green I Assay for Antimalarial Activity Assessment. Ann Clin Med Microbio 2(1): 1010. • Johnson, et al, 2007; DOI: 10.1128/AAC.01607-06. • Ariey et al, 2014; DOI: 10.1038/nature12876 • Witkowski et al, 2017; DOI: 10.1016/S1473-3099(16)30415-7 Leang et al, 2015; DOI: 10.1128/AAC.00835-15. • WHO Global database on antimalarial drug efficacy and resistance ( https://www.who.int/malaria/areas/drug_resistance/drug_efficacy_database/en/ ; Last update: 24 January 2020). • WHO Drug resistance and response ( https://www.who.int/malaria/areas/drug_resistance/en/ ). • SOP - Ring-stage Survival Assays (RSA) to evaluate the in-vitro and ex-vivo susceptibility of Plasmodium falciparum to artemisinins ( https://www.wwarn.org/sites/default/files/attachments/procedures/INV10-Standard-Operating-Procedure-Ring-Stage-Survival-Assays-v1.2.pdf ). • SOP - Piperaquine Survival Assays (PSA) to evaluate the in-vitro and ex-vivo susceptibility of Plasmodium falciparum to piperaquine (https://www.wwarn.org/tools-resources/procedures/piperaquine-survival-assays-psa-evaluate-vitro-and-ex-vivo-susceptibility ). • SOP - Quantitative PCR to assess P. falciparum plasmepsin 2 gene copy number v1.0 ( http://samara.needsolutions.fr/documents/site/sop_pfplasmepsin_v1_may2016_1_.pdf ). SOP - PCR-Sequencing for genotyping candidate P. falciparum artemisinin resistance SNPs PF3D7_1343700 Kelch protein propeller domain v1.0 ( http://samara.needsolutions.fr/documents/site/sop_sequencing_kelch_protein_propeller_v1_2013.pdf ). • Cirimotich CM, Dong Y, Garver LS, Sim S, Dimopoulos G 2010. Mosquito immune defenses against Plasmodium infection. Developmental and comparative immunology, 34: 387-95. • Sangare I, Dabire R, Yameogo B, Da DF, Michalakis Y, Cohuet A 2014. Stress dependent infection cost of the human malaria agent Plasmodium falciparum on its natural vector Anopheles coluzzii. Infection, genetics and evolution pii: S1567-1348(14)00128-2. • Yassine H, Osta MA 2010. Anopheles gambiae innate immunity. Cellular microbiology, 12: 1-9. • Lamb TJ, Brown DE, Potocnik AJ, Langhorne J. (2006). Insights into the immunopathogenesis of malaria using mouse models. Expert Rev Mol Med. 8:1-22. • Longley R, Smith C, Fortin A, Berghout J, McMorran B, Burgio G, Foote S, Gros P. (2011). Host resistance to malaria: using mouse models to explore the host response. Mamm Genome. 22:32-42. • Ayi K, Min-Oo G, Serghides L, Crockett M, Kirby-Allen M, Quirt I, Gros P, Kain KC 2008. Pyruvate kinase deficiency and malaria. The New England Journal of Medicine, 358: 1805-1810. • Duffy PE, Fried M 2006. Red blood cells that do and red blood cells that dont: how to resist a persistent parasite. Trends in Parasitology, 22: 99-101. • Lelliott PM, Huang HM, Dixon MW, Namvar A, Blanch AJ, Rajagopal V, Tilley L, Coban C, McMorran BJ, Foote SJ, Burgio G 2017. Erythrocyte ß spectrin can be genetically targeted to protect mice from malaria. Blood Advances, 1: 2624-2636. • Luzzatto L, Bienzle U 1979. The malaria/G6PD hypothesis. The Lancet, 1: 11831184. • Machado P, Manco L, Gomes C, Mendes C, Fernandes N, Salomé G, Sitoe L, Chibute S, Langa J, Ribeiro L, Miranda J, Cano J, Pinto J, Amorim A, do Rosário VE, Arez AP 2012. Pyruvate kinase deficiency in sub-Saharan Africa: identification of a highly frequent missense mutation (G829A;Glu277Lys) and association with malaria. PLoS ONE, 7: e47071. • Alonso P. et al. (2011). A Research agenda to underpin malaria eradication. PLoS Medicine, 8: e1000406. • Beales P.F. and Gilles H.M (2002). Rationale and technique of malaria control. In: Essential Malariology. Warrel D.A. and Gilles H.M. (Eds.), 4th Ed. Edward Arnold, Kent: 107-190. • Mendis K et al. 2009. From malaria control to eradication: The WHO perspective. Tropical Medicine and International Health, 14: 802-809. • Nájera J.A. et al. (2011). Some lessons for the future from the Global Malaria Eradication Programme (1955-1969). PLoS Medicine 8: e1000412. • RBM (2008). Global malaria Action Plan. For a malaria-free world. Roll Back Malaria Partnership. 271pp. • WHO (1998). Test procedures for insecticide resistance monitoring in malaria vectors, bio-efficacy and persistence of insecticides on treated surfaces. WHO/CDS/CPC/MAL/98.12. WHO (2015). • Global technical strategy for malaria 2016-2030. Global Malaria Programme, World Health Organization, Geneva. 29pp • WHO (2016). Test procedures for insecticide resistance monitoring in malaria vector mosquitoes (2nd Edition). Global Malaria Programme, World Health Organization, Geneva. 48pp. • WHO (2015). World malaria report, 2015. Global Malaria Programme, World Health Organization, Geneva. 243pp.
Teaching method
Direct teaching by lecture method (theoretical lectures). Indirect teaching by: guided discovery learning and solving problems in simulation environments and laboratory (theoretical-practical).
Evaluation method
Final classification of Course: written exam.
Subject matter
I. Control vs eradication. Control tools: parasite, vector, community education. Sustainability of control measures II. Systematics of genus Anopheles. Life cycle and external morphology. Bio-ecology and behaviour aspects with medical importance III. Biodiversity of genus Anopheles. Reproductive and digestive physiology. Interaction vector/parasite during esporogony IV. Dissection of female anophelines, wet-mount preparations, midguts observation, oocyst count V. Resistance to antimalarials: Mechanisms of resistance, molecular markers; Geographic distribution; Selection and spread of resistant parasites; Concepts of treatment failure and parasite resistance VI. Monitoring of resistance to antimalarial drugs (methods in vivo and in vitro) VII. Determination of the dynamics of parasitaemia in two species of murine plasmodia. Determination of parasitemia, spleen and liver index
Programs
Programs where the course is taught: