Métodos Bayesianos
Objetivos
O objectivo desta unidade curricular consiste na aprendizagem do paradigma bayesiano na análise estatística de dados, metodologias e técnicas computacionais para inferência, testes de hipóteses e previsão.
Caracterização geral
Código
12080
Créditos
6.0
Professor responsável
Miguel dos Santos Fonseca
Horas
Semanais - 4
Totais - A disponibilizar brevemente
Idioma de ensino
Português
Pré-requisitos
A disponibilizar brevemente
Bibliografia
1. Albert, J. (2009). Bayesian Computation with R. Spinger.
2. Bernardo J.M. & Smith, A.F.M. (1994). Bayesian theory. Wiley.
3. Congdon P (2001). Bayesian Statistical Modelling. Wiley.
4. Cowles, M.K. (2013). Applied Bayesian Statistics. With R and OpenBUGS Examples. Springer.
5. Gamerman, D. & Lopes, H.F. (2006). Markov chain Monte Carlo - stochastic simulation for Bayesian inference. 6. Chapman & Hall/CRC.
7. Gelman, A., Carlin, J.B., Stern, H.S., Rubin, D.B. (2003). Bayesian Data Analysis (2nd edition).
8. Chapman and Hall / CRC, 2003.
9. Gilks, W.R., Richardson, S. and Spiegelhalter, D. (Edts.) (1996) Markov chain Monte Carlo in Practice. Chapman and Hall/CRC.
10. Lee, P.M. (2004). Bayesian Statistics: An Introduction, 3rd edition, Arnold.
11. Turkman, M., Paulino, C., Müller, P. (2019). Computational Bayesian Statistics, Cambridge
12. Paulino, C., Turkman, M., Murteira, B., Silva, G. (2018). Estatística Bayesiana. Gulbenkian
Método de ensino
A disponibilizar brevemente
Método de avaliação
A avaliação será feita em 2 momentos:
Trabalho Individual (50% da nota) - TBA
Trabalho final individual (50% da nota) -TBA
Conteúdo
1 - O paradigma Bayesiano
2 - A distribuição a priori e métodos para a sua formulação
3 - A função verosimilhança, a distribuição a posteriori, as distribuições marginal e preditiva
4 - Inferência bayesiana
5 - Markov Chain Monte Carlo, MCMC
6 - Qualidade e seleção de modelos
7 - Modelos hierárquicos