Aprendizagem Profunda
Objetivos
- Understand the design principles of neural networks;
- Understand the concept of activation function;
- Understand the backpropagation algorithm for training a neural network;
- Being able to build a neural network to solve classification tasks;
- Being able to use Keras or similar libraries to build a Neural Network;
- Understand the convolution operator and the idea behind convolutional neural network;
- Understand the main principles of recurrent neural network;
- Understand LSTM and how they can be applied to counteract vanishing gradient problem.
- Being able to apply one of the deep model presented to solve classification or regression tasks.
Caracterização geral
Código
200180
Créditos
3.5
Professor responsável
Mauro Castelli
Horas
Semanais - A disponibilizar brevemente
Totais - A disponibilizar brevemente
Idioma de ensino
Português. No caso de existirem alunos de Erasmus, as aulas serão leccionadas em Inglês
Pré-requisitos
N/A
Bibliografia
Deep Learning. Ian Goodfellow, Yoshua Bengio, Aaron Courville. MIT Press, 2016.
Método de ensino
Theoretical and practical classes.
Método de avaliação
First epoch: deep learning project.
Second epoch: deep learning project.
Conteúdo
Introduction to deep learning
History and cognitive basis of neural computation.
The perceptron / multi-layer perceptron
The neural net as a universal approximator
Optimization by gradient descent
Back propagation
Overfitting and regularization (Dropout)
Convolutional Neural Networks (CNNs)
Training with shared parameters: the convlutional model
Recurrent Neural Networks (RNNs)
Exploding/vanishing gradients Long Short-Term Memory Units (LSTMs)
Cursos
Cursos onde a unidade curricular é leccionada: