Análise Matemática IV B

Objectivos

Pretende-se que o aluno se familiarize com as técnicas de resolução de equações diferenciais de primeira e de segunda ordem, de sistemas de equações diferenciais e de equações com derivadas parciais. Alguns outros importantes tópicos, próximos às equações diferenciais, também serão estudados.

Caracterização geral

Código

5006

Créditos

6.0

Professor responsável

A disponibilizar brevemente

Horas

Semanais - A disponibilizar brevemente

Totais - 70

Idioma de ensino

Português

Pré-requisitos

Análise Matemática I, II e III; Álgebra Linear

Bibliografia

Texto disponíbilizado aos alunos pelo docente e disponível no Clip.

Outros textos

Textos básicos.

Material na internet: Vilatte, Jaime, Equações diferenciais e equações de diferenças, FEUP http://villate.org/doc/eqdiferenciais/eqdif_20110426.pdf

Apostol, T.M., Calculus, Volume I and Volume II, Blaidsell Publishing Company.

Howard, Anton, Calculus: A New Horizon, John Wiley and Sons.

Taylor, A.E., Man, W.R., Advanced Calculus, John Wiley and Sons.

Stewart, J. Cálculo, Thomson Learning.

Ferreira, M. A. e Amaral, I, Matemática, Integrais míltiplos, equações diferenciais, Edições Síabo

Algumas referências extra:

Pontos 7, 8 e 10. Butkov, E. Mathematical Physics.

Ponto 9. The Mathematics of Medical Imaging: A Beginner''''''''s Guide, Timothy G. Feeman, Springer

Método de ensino

Aulas teóricas (3 horas por semana) e aulas práticas (2 horas por semana). Exercícios para casa e exercícios a ser resolvidos em aulas práticas.

Método de avaliação

É obrigatória a presença em pelo menos dois terços das aulas práticas, exceto se o aluno tiver algum estatuto que o dispense da mesma.

 

A componente contínua da avaliação consiste de dois testes. A média final é obtida pela soma ponderada dos dois testes, com pesos 4 e 6 respetivamente, isto é MF=(4*T1+6*T2)/10, arrendodada para o inteiro mais próximo (n.5 é arrendodado para n+1).

Para quem não for aprovado na avaliação contínua, é possível fazer um exame de recurso. O exame de recurso é feito sobre toda o programa da UC.

Conteúdo

1. EQUAÇÕES DIFERENCIAIS ORDINÁRIAS (EDO)
 
1.1- Equações diferenciais de primeira ordem: campo de direcções associado a uma EDO de 1ª ordem; curvas integrais do campo e soluções. Alguns resultados de existência e unicidade de soluções: os teoremas de Picard e de Peano. Noção de solução implícita de uma equação diferencial. Equações autónomas e soluções de equilíbrio. Equações lineares, separáveis e de Bernoulli. Equações exactas e noção de factor integrante.
 
1.2- Equações diferenciais de segunda ordem. Caso das equações homogéneas: polinómio característico e base do espaço vectorial solução. Generalização ao caso de equações diferenciais lineares homogéneas de ordem n>=3. Determinante Wronskiano e noção de independência linear de uma família de funções; estrutura afim do conjunto de soluções de uma EDO linear de 2ª ordem. Método de d''''''''''''''''Alembert. Método de variação das constantes. Método dos coeficientes indeterminados. Noção de ressonância.
 
1.3- Resolução de equações diferenciais ordinárias através do uso de séries de potências. Resolução de equações diferenciais ordinárias através do uso de funções de Bessel, de Lagrange e de Hermite.
 
1.4- Sistemas de equações diferenciais lineares de coeficientes constantes: generalidades e estrutura das soluções. Base do espaço vectorial solução; relação entre o espectro do sistema linear associado e a estabilidade das soluções de equilíbrio.
 
2. TRANSFORMADA DE LAPLACE
 
2.1- Definição. Transformada de Laplace das funções usuais: polinómios, exponencial e funções trigonométricas.
 
2.2- Efeito na transformada de Laplace da multiplicação por uma exponencial e por uma função linear. Transformada de Laplace da derivada de uma função e da função trasladada.
 
2.3- Transformada de Laplace da função de Heaviside e da distribuição de Dirac.
 
2.4- Transformada de Laplace e convolução. Transformada de Laplace inversa.
 
2.5- Aplicações à resolução de equações diferenciais lineares.
 
3. EQUAÇÕES COM DERIVADAS PARCIAIS (EDP)
 
3.1- Decomposição em série de Fourier de uma função periódica: generalidades sobre funções periódicas; modos sin(2 Pi t/n) e cos(2 Pi t/n); a série de Fourier associada a uma função periódica suficientemente regular; condições suficientes de igualdade entre uma função e a respectiva série de Fourier; pontos de descontinuidade e fenómeno de Gibbs. Decomposição de uma função regular em série de senos/co-senos num dado intervalo.
 
3.2- Aplicações das séries de Fourier às EDP: generalidades sobre EDP; método de separação de variáveis. Aplicações ao caso parabólico (equação do calor), hiperbólico (equação das ondas) e elíptico (equação de Laplace).
 
4. TRANSFORMADA DE FOURIER
 
4.1- Definição. Propriedades elementares da transformada de Fourier. Transformada de Fourier inversa. Aplicações à resolução de equações diferenciais lineares.
 
5. INTRODUÇÃO AO CÁLCULO DAS VARIAÇÕES
 
5.1- Introdução. Definição de funcional e de Lagrangiano. Lema fundamental do cálculo das variações e equações de Euler-Lagrange.
 
5.2- Exemplos clássicos do cálculo das variações: curvas geodésicas, lei de Snell-Descartes, curva catenária, problema braquistócrono, problema isócrono. Aplicações.
 
6. INTRODUÇÃO À TRANSFORMADA DE RADON
 
6.1- Definição de transformada de Radon. Aplicações.