Análise de Dados Multivariados
Objetivos
The objective of data analysis is to extract the relevant information contained in the data which can then be used to solve a given problem.
Caracterização geral
Código
400013
Créditos
6.0
Professor responsável
Jorge Morais Mendes
Horas
Semanais - A disponibilizar brevemente
Totais - A disponibilizar brevemente
Idioma de ensino
Português. No caso de existirem alunos de Erasmus, as aulas serão leccionadas em Inglês
Pré-requisitos
Statistics and linear algebra (recommended)
Bibliografia
- Everitt, B. and Hothorn, T. (2011). An Introduction to Applied Multivariate Analysis with R, Springer
- Johnson, R.A and Winchern (2007), D. W., Applied Multivariate Statistical Analysis, 6th edition, Pearson Prentice Hall
- Sharma, S., (1996) Applied Multivariate Techniques, John Wiley & Sons
- Timm, N. H., (2002) Applied Multivariate Analysis, Springer
- Jr., W. C. Black, B. J., Hair, J. F. (2013). Multivariate Data Analysis-Pearson, 7th edition, Education Limited.
Método de ensino
The course is based on theoretical-practical and practical classes. Practical classes and problem-solving
oriented.
Método de avaliação
- (50%) Final exam (1st and 2nd rounds)
- (50%) Project (optional)
- Final grade: máximum (Final exam grade;0.5*(Final exam grade)+0.5*Project grade))
A minimum grade of 8.5 is required in the final exam to pass.
Conteúdo
- Multivariate data analysis basics
- Getting started with R. First R tutorial
- The multivariate normal distribution
- Graphical display of multivariate data
- Principal components analysis
- Factor analysis
- Cluster analysis
- Correspondence analysis and multidimensional scaling
Cursos
Cursos onde a unidade curricular é leccionada: