Deep Learning Neural Networks

Objetivos

NA

Caracterização geral

Código

200206

Créditos

4.0

Professor responsável

Mauro Castelli

Horas

Semanais - A disponibilizar brevemente

Totais - A disponibilizar brevemente

Idioma de ensino

Português. No caso de existirem alunos de Erasmus, as aulas serão leccionadas em Inglês

Pré-requisitos

Introduction to deep learning
History and cognitive basis of neural computation.
The perceptron / multi-layer perceptron
The neural net as a universal approximator
Optimization by gradient descent
Back propagation Overfitting and regularization (Dropout)
Convolutional Neural Networks (CNNs)
Training with shared parameters: the convlutional model Recurrent Neural Networks (RNNs)
Exploding/vanishing gradients Long Short-Term Memory Units (LSTMs)

Bibliografia

Deep Learning. Ian Goodfellow, Yoshua Bengio, Aaron Courville. MIT Press, 2016.

Método de ensino

First epoch: deep learning project.

Second epoch: deep learning project

Método de avaliação

English

Conteúdo

Theoretical and practical classes.

Cursos

Cursos onde a unidade curricular é leccionada: