Deep Learning Neural Networks
Objetivos
NA
Caracterização geral
Código
200206
Créditos
4.0
Professor responsável
Mauro Castelli
Horas
Semanais - A disponibilizar brevemente
Totais - A disponibilizar brevemente
Idioma de ensino
Português. No caso de existirem alunos de Erasmus, as aulas serão leccionadas em Inglês
Pré-requisitos
Introduction to deep learning
History and cognitive basis of neural computation.
The perceptron / multi-layer perceptron
The neural net as a universal approximator
Optimization by gradient descent
Back propagation Overfitting and regularization (Dropout)
Convolutional Neural Networks (CNNs)
Training with shared parameters: the convlutional model Recurrent Neural Networks (RNNs)
Exploding/vanishing gradients Long Short-Term Memory Units (LSTMs)
Bibliografia
Deep Learning. Ian Goodfellow, Yoshua Bengio, Aaron Courville. MIT Press, 2016.
Método de ensino
First epoch: deep learning project.
Second epoch: deep learning project
Método de avaliação
English
Conteúdo
Theoretical and practical classes.
Cursos
Cursos onde a unidade curricular é leccionada: