Urban Analytics

Objetivos

Previous knowledge in data bases.

Caracterização geral

Código

400091

Créditos

7.5

Professor responsável

Miguel de Castro Simões Ferreira Neto

Horas

Semanais - A disponibilizar brevemente

Totais - A disponibilizar brevemente

Idioma de ensino

Português. No caso de existirem alunos de Erasmus, as aulas serão leccionadas em Inglês

Pré-requisitos

T.1 - Geographic Information Systems

  1.1 Introduction

  1.2 Geospatial Technology as a Key to Smart Cities

  1.3 Power of Mapping a City

  1.4 How does GIS can work for our city

  1.5 Smart GIS applications for SMART Cities (Case Studies)

      1.5.1 Spatial problems

      1.5.2 Data acquisition

      1.5.3 Data quality

      1.5.4 Modelling and data analysis tools

      1.5.5 Data sharing

T.2 ¿ Information Dashboard Design

2.1 Introduction

2.2 Information Design

2.3 Dashboard Design Challenges

2.4 Dashboard Design Best Practices

2.5 Power BI

   2.5.1 Introducing Power BI

   2.5.2 Getting data

   2.5.3 Building a data model

   2.5.4 Creating reports and dashboards

   2.5.5 Advanced topics: sharing a dashboard; refreshing data; and enterprise integration

Bibliografia

On line resources

Método de ensino

Evaluation variables:

   a) GIS Project

   b) Dashboard Project

   c) Final Exam

Grading, in both exam seasons, will result from the following evaluation variables weights:

   a) 35%

   b) 35%

   c) 30%

To pass a minimum of 9,5 must be obtained in the final exam.

  • Groups composition defined by the students
  • Maximum number of group members: 2

Método de avaliação

English

Conteúdo

Computers labs with project based approach using ESRI Arc GIS (Part I) and Microsoft Power BI (Part II).