Urban Analytics
Objetivos
Previous knowledge in data bases.
Caracterização geral
Código
400091
Créditos
7.5
Professor responsável
Miguel de Castro Simões Ferreira Neto
Horas
Semanais - A disponibilizar brevemente
Totais - A disponibilizar brevemente
Idioma de ensino
Português. No caso de existirem alunos de Erasmus, as aulas serão leccionadas em Inglês
Pré-requisitos
T.1 - Geographic Information Systems
1.1 Introduction
1.2 Geospatial Technology as a Key to Smart Cities
1.3 Power of Mapping a City
1.4 How does GIS can work for our city
1.5 Smart GIS applications for SMART Cities (Case Studies)
1.5.1 Spatial problems
1.5.2 Data acquisition
1.5.3 Data quality
1.5.4 Modelling and data analysis tools
1.5.5 Data sharing
T.2 ¿ Information Dashboard Design
2.1 Introduction
2.2 Information Design
2.3 Dashboard Design Challenges
2.4 Dashboard Design Best Practices
2.5 Power BI
2.5.1 Introducing Power BI
2.5.2 Getting data
2.5.3 Building a data model
2.5.4 Creating reports and dashboards
2.5.5 Advanced topics: sharing a dashboard; refreshing data; and enterprise integration
Bibliografia
On line resources
Método de ensino
Evaluation variables:
a) GIS Project
b) Dashboard Project
c) Final Exam
Grading, in both exam seasons, will result from the following evaluation variables weights:
a) 35%
b) 35%
c) 30%
To pass a minimum of 9,5 must be obtained in the final exam.
- Groups composition defined by the students
- Maximum number of group members: 2
Método de avaliação
English
Conteúdo
Computers labs with project based approach using ESRI Arc GIS (Part I) and Microsoft Power BI (Part II).
Cursos
Cursos onde a unidade curricular é leccionada: