Aprendizagem Profunda
Objetivos
N/A
Caracterização geral
Código
200180
Créditos
3.5
Professor responsável
Mauro Castelli
Horas
Semanais - A disponibilizar brevemente
Totais - A disponibilizar brevemente
Idioma de ensino
Português. No caso de existirem alunos de Erasmus, as aulas serão leccionadas em Inglês
Pré-requisitos
Introduction to deep learning
History and cognitive basis of neural computation.
The perceptron / multi-layer perceptron
The neural net as a universal approximator
Optimization by gradient descent
Back propagation
Overfitting and regularization (Dropout)
Convolutional Neural Networks (CNNs)
Training with shared parameters: the convlutional model
Recurrent Neural Networks (RNNs)
Exploding/vanishing gradients Long Short-Term Memory Units (LSTMs)
Bibliografia
Deep Learning. Ian Goodfellow, Yoshua Bengio, Aaron Courville. MIT Press, 2016.
Método de ensino
First epoch: deep learning project.
Second epoch: deep learning project.
The project is the same for the two epochs.
The student can defend the project in only one of the two epochs. If a student fails the first epoch he/she is responsible for proposing a new project that must be validated by the professor. The same applies to students that want to improve the grade.
Método de avaliação
English
Conteúdo
Theoretical and practical classes.
Cursos
Cursos onde a unidade curricular é leccionada: