Aprendizagem Profunda

Objetivos

Present the area of deep learning. Discuss different architectures for addressing problems with images, time series, simple observations. Be able to implement and train a neural network in Keras.

Caracterização geral

Código

200180

Créditos

3.5

Professor responsável

Mauro Castelli

Horas

Semanais - A disponibilizar brevemente

Totais - A disponibilizar brevemente

Idioma de ensino

Português. No caso de existirem alunos de Erasmus, as aulas serão leccionadas em Inglês

Pré-requisitos

NA

Bibliografia

Deep Learning. Ian Goodfellow, Yoshua Bengio, Aaron Courville. MIT Press, 2016.

Método de ensino

Theoretical and practical classes.

Método de avaliação

First epoch: deep learning project.

Second epoch: deep learning project.

More details will be provided during the course.

Conteúdo

Introduction to deep learning.

History and cognitive basis of neural computation.

The perceptron / multi-layer perceptron.

The neural net as a universal approximator.

Optimization by gradient descent and Back propagation.

Overfitting and regularization (Dropout).

Convolutional Neural Networks (CNNs).

Training with shared parameters: the convlutional model.

Recurrent Neural Networks (RNNs). Exploding/vanishing gradients.

Long Short-Term Memory Units (LSTMs).

Cursos

Cursos onde a unidade curricular é leccionada: