Big Data para Marketing
Objetivos
This curricular unit builds on marketing concepts and advanced analytical techniques to take full advantage of the vast amount of data available these days to marketing professionals.
Caracterização geral
Código
200202
Créditos
7.5
Professor responsável
Flávio Luís Portas Pinheiro
Horas
Semanais - A disponibilizar brevemente
Totais - A disponibilizar brevemente
Idioma de ensino
Português. No caso de existirem alunos de Erasmus, as aulas serão leccionadas em Inglês
Pré-requisitos
It is recommended that students have basic knowledge of statistics and Python.
Bibliografia
Método de ensino
The curricular unit is based on theoretical-practical classes. The sessions include the presentation of concepts and methodologies and the practical application of different concepts using different languages and computer applications. Several teaching strategies are applied, including slides presentation and step-by-step instructions on approaching practical examples, questions, and answers. The practical component is oriented towards exploring tools introduced to students, including the discussion of the best approach in different scenarios.
Applications used: Python, Jupyter notebook, Microsoft visual code, HDInsight Azure, BigQuery, Databricks.
Método de avaliação
Due to the application-based design of the course, evaluation is continuous.
All evaluation grades are on a scale of 0-20. The final course grade is calculated based on the following weights:
- Completion of self-assessment survey: 2.5%
- Group membership submission (in the due deadline): 2.5%
- Group project (minimum grade is 8.0):
- Materials (datasets, code, etc.) and report: 50%
- Due date: to be confirmed (around 10 days before 2nd season exam date
- Exam (individual - with materials consultation - minimum grade is 8.0): 45%
All submissions should be made via Moodle. Submissions after the deadline will be rejected.
Conteúdo
- LU1. Introduction to Big Data
- LU2. Data sources
- LU3. Databases and SQL
- LU4. Hadoop
- LU5. BigQuery
- LU6. Spark
- LU7. Spark: Introduction to text mining
- LU8. Spark: Frequent pattern mining
- LU9. Spark: Machine learning
- LU10. Big data marketing project
Cursos
Cursos onde a unidade curricular é leccionada:
- Especialização em Data Science for Marketing
- Especialização em Digital Marketing and Analytics
- Especialização em Marketing Intelligence
- Especialização em Marketing Research e CRM
- Laboral - Especialização em Digital Marketing and Analytics
- Laboral - Especialização em Marketing Intelligence
- Mestrado em Data-Driven Marketing
- Mestrado em Data-Driven Marketing
- Pós-Graduação em Data Science for Marketing
- Pós-Graduação em Digital Marketing and Analytics
- Pós-Graduação em Marketing Intelligence
- Pós-Graduação em Marketing Research e CRM (Estudos de Mercado e Gestão do Relacionamento com o Cliente)