Métodos Analíticos para Redes Sociais
Objetivos
Social media's rapid growth has given mass consumers a powerful tool to create knowledge and propagate opinions. Simultaneously, social media has created an unprecedented opportunity for organizations to engage in real-time interactions with consumers. In addition, the size and richness of social media data have provided organizations with an unusually deep reservoir of consumer insights to transform business and marketing operations.
The Social Media Analytics course will use a multidisciplinary approach that combines the triad “social network analysis, text mining, and data mining” to help students grasp the analytics tools to leverage social media data. Students will be introduced to and apply tools such as data collection, sentiment analysis, topic modeling, social network analysis, and influencers' identification.
Caracterização geral
Código
400081
Créditos
7.5
Professor responsável
Nuno Miguel da Conceição António
Horas
Semanais - A disponibilizar brevemente
Totais - A disponibilizar brevemente
Idioma de ensino
Português. No caso de existirem alunos de Erasmus, as aulas serão leccionadas em Inglês
Pré-requisitos
Familiarity with the main theme of the course is not required. However, it is highly recommended that the students have knowledge of Statistics, Algebra, and Python as well as good skills as computer users.
Students without previous training or experience with Python should complete the three following Datacamp online courses before the third week of this course (first practical class): Introduction to Python, Intermediate Python, and Data manipulation with pandas. The instructor will provide information on how to have free access to the Datacamp platform.
Bibliografia
Método de ensino
The course is based on theoretical and practical classes. Several teaching strategies are applied, including presentation of slides, step-by-step instructions on approaching practical examples, and questions and answers. The practical component is oriented towards exploring the tools introduced to students (Brandwatch, Fanpage Karma, Python, and Gephi) and the development of the final project.
Método de avaliação
Due to the application-based design of the course, evaluation is continuous and applies to both the theory and practical components. There is no “one only exam” with a single weight of 100%.
All evaluation grades are on a scale of 0-20. The final course grade is calculated based on the following weights:
- Group Brandwatch project: 10%
- Group data collection project: 10%
- Group final project:
- Presentation/discussion: 10%
- Materials (datasets, code, etc.) and report: 30%
- The minimum grade is 8.0
- Individual exam:
- 1st season or 2nd season: 40% weight
- With consultation of materials
- The minimum grade is 8.0
All submissions should be made via Moodle. Submissions after the deadline will be rejected.
Conteúdo
- LU1. Introduction to Social Media Analytics
- LU2. Introduction to Social Media listening tools: Brandwatch and Fanpage Karma
- LU3. Data collection
- LU4. Introduction to Text Mining
- LU5. Graphs essentials
- LU6. Network measures
- LU7. Network visualization tools: Gephi
Cursos
Cursos onde a unidade curricular é leccionada:
- Especialização em Business Intelligence
- Especialização em Data Science for Marketing
- Especialização em Digital Marketing and Analytics
- Especialização em Gestão dos Sistemas de Informação
- Especialização em Marketing Intelligence
- Especialização em Market Research & CRM
- Especialização em Transformação Digital
- Laboral - Especialização em Business Intelligence
- Laboral - Especialização em Data Science for Marketing
- Laboral - Especialização em Digital Marketing and Analytics
- Laboral - Especialização em Gestão dos Sistemas de Informação
- Laboral - Especialização em Marketing Intelligence
- Mestrado em Marketing Analítico (Data Driven Marketing)
- Mestrado em Marketing Analítico (Data Driven Marketing)
- Pós-Graduação em Business Intelligence
- Pós-Graduação em Cidades Inteligentes (Smart Cities)
- Pós-Graduação em Data Science for Marketing
- Pós-Graduação em Digital Marketing and Analytics
- Pós-Graduação em Estudos de Mercado & CRM
- Pós-Graduação em Gestão de Informação e Business Intelligence na Saúde
- Pós-Graduação em Gestão dos Sistemas de Informação
- Pós-Graduação em Marketing Intelligence
- Pós-Graduação em Sistemas de Informação Empresariais
- Pós-Graduação em Transformação Digital