Neural and Evolutionary Learning
Objetivos
Transferring to the students knowledges about the possible ways in which Evolutionary Computation can help improving the performance of other Machine Learning methods, with particular reference to Artificial Neural Networks.
Caracterização geral
Código
200294
Créditos
4.0
Professor responsável
Leonardo Vanneschi
Horas
Semanais - A disponibilizar brevemente
Totais - A disponibilizar brevemente
Idioma de ensino
Português. No caso de existirem alunos de Erasmus, as aulas serão leccionadas em Inglês
Pré-requisitos
TBD.
Bibliografia
Método de ensino
Use of (black-)board and slides in the theoretical classes. Use of Python computer programming environments for the practical classes.
Método de avaliação
TBD
Conteúdo
- A quick revision of Evolutionary Algorithms
- A deeper look at Genetic Programming
- What can be evolved? The importance of representation
- Evolutionary Computation as a meta-learning algorithm
- A quick revision of the functioning of artificial neurons
- A look back at the Backpropagation
- From gradient descent to the Backpropagation: a step-by-step derivation of the algorithm
- Limitations of the Backpropagation
- How to Improve the Backpropagation?
- Neuro-evolution: Neural Networks evolved by means of Genetic Programming
- Comparison between Backpropagation and Neuro-evolution: pros and cons
- A hint on model’s interpretability and interpretable AI
Cursos
Cursos onde a unidade curricular é leccionada: